If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-12x-96=0
a = 1; b = -12; c = -96;
Δ = b2-4ac
Δ = -122-4·1·(-96)
Δ = 528
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{528}=\sqrt{16*33}=\sqrt{16}*\sqrt{33}=4\sqrt{33}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-4\sqrt{33}}{2*1}=\frac{12-4\sqrt{33}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+4\sqrt{33}}{2*1}=\frac{12+4\sqrt{33}}{2} $
| 2(3p-4)=1 | | k+50+30+k=180 | | -14/d=7 | | 12x+15=-20 | | 1.5x+1x=180 | | 1000x=255 | | 3/2b+6+1/b=15+2b | | 12x-48=4x-12 | | -216+x3=0 | | 1+w=67 | | 4h-24=9+81 | | y/5−23=−29 | | y5−23=−29 | | 2(x-3)+21=- | | -2/d=8 | | 5j-3=-34 | | 7(3r-`)-(r+5)=-52 | | 7(3r-10=-(r+5)=-52 | | 26+7k=5-7(8k+6) | | 336=n/2(122+(n-1)-2) | | 1b-11=6 | | 7x+24=25 | | 160+90+50+j+j=360 | | 7d-9=33 | | 7d+9=33 | | r^2=77/49 | | x5+3=−4 | | -42=(6x+6) | | -2(x-9)=x+3(x+10) | | 44-66x+5+65x=9 | | 2(x+8)-2=7x+9 | | 5(÷4h)+2h=27 |